Problem 30. Let $E: \mathcal{B}(\mathbb{R}) \rightarrow B(H)$ be a spectral measure. Show that the following hold for all $B_{1}, B_{2} \in \mathcal{B}(\mathbb{R})$:
(a) $B_{1} \subseteq B_{2} \Longrightarrow E_{B_{1}} \leq E_{B_{2}}$,
(b) $E_{B_{1}} E_{B_{2}}=E_{B_{2}} E_{B_{1}}$,
(c) $E_{B_{1} \cup B_{2}}=E_{B_{1}} \vee E_{B_{2}}$.

Problem 31. Let $f: \mathbb{R} \rightarrow \mathbb{R}$ be a bounded measurable function and

$$
\begin{aligned}
M_{f}: L^{2}(\mathbb{R}) & \rightarrow L^{2}(\mathbb{R}), \\
M_{f} g(t) & =f(t) g(t),
\end{aligned}
$$

the (self-adjoint) multiplication operator. Determine the spectral projection $E(B)$ for $B \in \mathcal{B}(\mathbb{R})$.
Problem 32. Let $P \in B(H)$ be an orthogonal projection and

$$
\{P\}^{\prime}:=\{T \in B(H) \mid T P=P T\}
$$

the commutant of P. Show that

$$
\{P\}^{\prime}=\{T \in B(H) \mid \operatorname{ran} P \text { and ker } P \text { are invariant under } T\} .
$$

Problem 33. A vector $x \in H$ is called cyclic for an operator $T \in B(H)$ if $\mathcal{L}\left\{T^{n} x \mid n \in\right.$ $\left.\mathbb{N}_{0}\right\}$ is dense in H. Let $A \in B(H)$ be a self-adjoint operator and x a cyclic vector. Denote the spectral measure at x by $\mu=\mu_{x}$ so that $\mu(B)=\langle E(B) x, x\rangle$. Then the map

$$
\begin{array}{r}
U: L^{2}(\mu) \rightarrow H, \\
\quad f \mapsto f(A) x,
\end{array}
$$

is an isometry and

$$
\left(U A U^{-1} f\right)(t)=M_{f(t)} \text { on } L^{2}(\mu)
$$

